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1 Introduction

Vector-borne diseases are a major public health problem. They include long-
established scourges, such as malaria and dengue fever, as well as emerging
diseases such as West Nile virus. The maintenance and resurgence of vector-
borne diseases is related to ecological changes that favor increased vector
densities or vector-host interactions, among other factors. There have been
profound increases in the magnitude of vector-borne disease problems as
the result of urbanization, deforestation and development. Experts recog-
nize urbanization as one of the most important drivers of global change,
and predict that rapid increases in urban populations throughout the world
will have major implications for human health in general and vector-borne
diseases specifically (Sutherst 2004). Travel and transport have also con-
tributed to the spread of vector-borne diseases. There are reasons to believe
that the spatial movement of humans may be important for the epidemiol-
ogy of vector-borne diseases. Malaria remains surprising prevalent among
residents of some urban areas where there are very few mosquitoes; however,
many of those residents visit rural or periurban areas where the disease is
much more prevalent, so it is plausible that those visits might make the
persistence of malaria in the urban setting more likely. Empirical studies
supporting the idea that travel outside urban areas is an important factor in
maintaining malaria in urban areas where transmission is low are described
by Osorio et al. (2004), Domarle et al. (2006), and Ronald et al. (2006).
Ronald et al. (2006) also noted that lower socioeconomic status was corre-
lated with increased risk of infection. The use of personal protection such
as bednets may vary between locations or socio-economic classes; such an
effect was explored using simple models by Kileen et al. (2003).

We will use spatial models to examine how the the movements of hu-
mans in heterogeneous environments affect the transmission of vector-borne
diseases. Specifically, we will study how diseases can be maintained in re-
gions of low transmission by the movement of humans between regions of
high and low transmission or the immigration of humans into regions of
low transmission from regions of high transmission. Our study of this phe-
nomenon is motivated by the specific case of malaria but may be relevant to
other vector-borne diseases. Our analysis will be based on spatial versions



of the classical Ross-Macdonald model. A review of the derivation of Ross-
Macdonald models is given in (Smith and McKenzie 2004). Although our
goal is to understand spatial effects, our modeling approach could also be
used to treat movement between different socio-economic classes or lifestyles.
Because we want to consider the movement of humans we will use the pop-
ulations of infected humans and mosquitoes as state variable rather than
the proportions of the human and mosquito populations that are infected.
This is also how mosquito populations are treated in (Smith et al. 2004),
where mosquitoes are assumed to move but humans are not. We will model
space as a network of patches. We will use two different sorts of descrip-
tions of movement. . One description identifies humans as resident in a
given patch or belonging to a certain social group and assumes that that
remain in that patch or group most of the time, but may visit other patches
or groups often enough for pathogen transmission to occur there. In that
case the infection rate for humans in a given class or location depends on
the numbers of infectious vectors in other patches and the fraction of their
time that individual humans spend in those patches but is not directly to an
explicit description of human movement between classes or patches. This
type of formulation has been used by (Dye and Hasibeder 1986, Hasibeder
and Dye 1988, Rodriguez and Torres-Sorando 2001, Ruan et al.2006). This
approach is related to the Lagrangian approach to modeling in fluid dynam-
ics because it in effect labels individuals (by patch or class) and tracks what
happens to them. A type of movement we envision this modeling approach
as describing is where people and/or vectors are commuting between loca-
tions (or changing their activities) on a regularly scheduled basis, so that
there is a well defined fraction of time that any given individual spends in
any given location or state of activity. Another description is to assume
that pathogen transmission to humans in a given class or patch occurs only
within that class or patch but there is mobility between classes or patches
that can be explicitly described via something like discrete diffusion. This
type of approach has been used by (Allen et al. 2007, Arino and van den
Driessche 2003, Arino et al. 2005, Dhirasakdanon et al. 2007, Hsieh et al.
al. 2007, Liu et al. 2006, Smith et al. 2004, Wang and Mulone 2003, Wang
and Zhao 2004, 2005). It is related to the Eulerian approach to modeling
in fluid mechanics because it labels locations (or classes) and tracks what
happens in them but does not distinguish individuals by residence, only by
current location. A type of movement we envision this modeling approach
as describing is migration from one location to another, because discrete
diffusion explicitly describes such movement and can result in changes in
the total number of individuals in a given patch, at least until a population



equilibrium is attained.. Sattenspiel and Dietz (1995) use a combined ap-
proach but do not consider vector-borne diseases. The models in (Dye and
Hasibeder 1986, Hasibeder and Dye 1988, Rodriguez and Torres-Sorando
2001, Smith et al. 2004, Liu et al. 2006) describe various aspects of the
transmission of vector-borne diseases in networks of patches or classes but
are used to address specific questions that are different from those we will
consider here.

2 Modeling Framework

2.1 A single-patch model

Within a single patch, we base our description of disease dynamics on the
Ross-Macdonald type model of (Smith and McKenzie, 2004). Our notation
is slightly different from theirs but our model is equivalent to theirs. The
model assumes that human and mosquito populations are fixed but there
is turnover in the mosquito population because of adult mortality. The
state variables in the model are the proportions z and z of the human and
mosquito populations respectively consisting of infectious individuals. The
parameters in the model are as follows:

a represents the human feeding rate of mosquitoes (number of bites on
humans, per mosquito, per unit time),

b represents the transmission efficiency from infected mosquitoes to hu-
mans,

c represents the transmission efficiency from infected humans to mosquitoes,
m  represents the mortality rate of mosquitoes,
r  represents the recovery rate of humans,

n  represents the incubation period from the time a mosquito becomes
infected until it becomes infectious,

M  represents the ratio of mosquitoes to humans.

In our notation the model is



A detailed derivation of the model and a discussion of how the parameters
can be related to data and various indices such as the human blood in-
dex (HBI) and entomological inoculation rate (EIR) is given by Smith and
MacKenzie (2004). The term e™™" in the equation for the proportion of
infectious mosquitoes arises because the rate of mosquito turnover due to
adult mortality is typically high enough that a significant fraction of infected
mosquitoes can be expected to die before they become infectious.

We need to rewrite (2.1) in terms of populations rather than fractions of
populations for our derivation of spatial models. In parts of the derivation
we will want to consider the human and mosquito populations in each patch
as variables that can change over time due to the movement of humans or
mosquitoes. Furthermore, we will find it convenient to use the number of
infected mosquitoes rather than the number of infectious mosquitoes as a
state variable. To that end we introduce the following variables:

represents the total human population,

H

X represents the number of infected humans,
V' represents the total mosquito population,
Y

represents the number of infected mosquitoes.

In a situation where H and V can vary, M will no longer be a constant
parameter, but in any case M = V/H. In general, X = zH and e™™"Y =
zV. Using those relations we can rewrite (2.1) as

dX abe~™n

E—- 7 Y(H—X)—’T'X,
(2.2)
dy ac



We will use the formulation in (2.2) to build our spatial models. In those
models we will write parameters analogous to those appearing in (2.2) in
condensed form, indexed by patch.

2.2 The spatial models

In our models models we will treat space as a network of connected patches.
The patches (or nodes) typically will represent different geographical lo-
cales such as rural areas, villages, or city districts, but the same modeling
approach could be used to describe networks of different groups within a
population (schoolchildren, factory workers, night watchmen, etc.) We will
examine models based on two different ways of describing the movement of
humans and/or mosquitoes among the patches. In the first type of model
we will label individuals as residents of a particular patch and describe their
interactions with individuals from their own or other patches in terms of the
rate of exposure to infection from residents of those patches. We will assume
that individuals do not move permanently from their patch of residence to
another patch, but may visit other patches. The rate at which individuals
become infected will then depend upon the fraction of their time that they
spend in each patch together with the transmission rates in those patches.
We will sometimes refer to this approach as Lagrangian in that it labels and
in some sense tracks individual humans or mosquitoes. In the second type
of model we will assume that humans and mosquitoes can migrate between
patches and thus do not have a specified patch of residence. The rate at
which individuals become infected will depnd only on the patch where they
are located. We will sometimes refer to this approach as Eulerian because
we will track what happens in a given location (patch) rather than what
happens to labeled individuals. The first or Lagrangian approach has been
used in (Dye and Hasibeder 1986, Hasibeder and Dye 1988, Rodriguez and
Torres-Sorando 2001, Ruan et al.2006). The second or Eulerian approach
has been used in (Allen et al.2007, Arino and van den Driessche 2003, Arino
et al. 2005, Dhirasakdanon et al. 2007, Hsieh et al. al. 2007, Liu et al.
2006, Smith et al. 2004, Wang and Mulone 2003, Wang and Zhao 2004,
2005). Models using a combination of these approaches have been used in
Sattenspiel and Dietz (1995). Throughout our discussion we will use IV to
denote the total number of patches:

N represents the total number of patches in the network.

To formulate spatial models using the Lagrangian approach, we need
to define transmission rates by averaging the rates across patches weighted



by the fraction of their time that individual spend in each patch. We will
denote those as follows:

pi;  represents the fraction of time a human resident in patch i spends
visiting patch j,

gi; represents the fraction of time a mosquito resident in patch ¢ spends
visiting patch j.

Note that

N N
Do =D fi=1
=1 =

Let ay, by, ¢;, my, 75, 4, Hi, V; denote the values of the parameters appear-
ing in (2.2) in the case of the ith patch. Define

bom. oL
o a;bip;je ™

Ay = H,
(2.3)
Q;Cigii
By = 2% I::J’j 4
Our Lagrangian models then have the form
ax; I
dtz = () _AyYi)(H; — X;) — X,
=1
ay; Y (2.4)
dtz = () _ByX;)(Vi - Y;) - miYs,
j=1
i=1,...,N.

It is clear that the set {(X1,...,Xn,Y1,...,Yn) : 0 < X; < H;, 0 <
Y; <V, i=1,...,N} is invariant for (2.4). We will always assume that
0 < X;(0) < H; and 0 < Y;4(0) < V; for all 4.

In some cases we may want to assume that the total vector populations in
one or more of the patches are zero, so that the numbers of infected vectors
in those patches are also zero (so there is no equation for the number of
infected vectors in that patch) and thus some of the transmission terms in



(2.4) are zero since some of the variables Y; are always zero. Such models
can be cast in the form

axX;
dti = (ZAZJYJ)(H?r - X.L') - ,rviXi for i= 1, ey N
j=1
(2.44)
dY; & .
e O By X;)(Vi-Yi) —miY; for i=1,...,N
7j=1

where N7 < N.

In deriving our Eulerian models we must address the issue that the total
human and/or vector populations in a given patch might change sufficiently
over time to affect the model. We will start by formulating a model where
those populations are viewed as dynamic variables, but then we will make the
assumption that those populations have come to the equilibrium predicted
by the migration rates, at least relative to the the time scale on which we
want to study the system. That will allow us to examine how vector-borne
diseases might be propagated through populations that are distributed in
space in situations where a migration pattern is relatively stable over time.
It would be of interest to study transient effects, and even systems where
migration rates can vary over time, but we will not do that in the present
article. To derive Eulerian models we will initially use H; and V; to denote
human and vector populations on the ith patch, but we will consider them as
dynamic variables. We will use Cj; to denote the migration rate of humans
from patch j to patch ¢ and D;; to denote the corresponding rate for vectors:

C;; represents the rate of human migration from patch j to patch 4,

D;; represents the rate of vector migration from patch j to patch ¢

The movement model for migration then takes the form of a discrete diffu-
sion:



dH; & Y
pr = Zcinj - (chi)Hi,
po P
N
-C-g—? = }_NjDijVj - XDV, &9
o g
i=1,...,V.
Define
N N
Cy = ——ZCji, Dy = “ZDjiy t=1, N, (2.6)
g 7
and
N N
H=YH, V=WV
g=1 i=1

dH
By summing the equations forH; in (2.5) we can see that v 0, and simi-

larly % = 0. Thus, H(t) = H(0) and V(t) = V(0). Also, (1,...,1)((Ci;)) =
0, so zero is an eigenvalue of ((Cj;)), and similarly for ((D;;)). Under an
additional assumption of irreducibility, zero can be seen to be principal
eigenvalue of ((Cy;)) and ((Dy;)) by the Perron-Frobenius theorem (because
it has a positive left eigenvector), so it is simple and any other eigenvalue has

real part less than zero. (See for example (Berman and Plemmons 1979,Gra-
ham 1987). Thus we have:

Lemma 1: Suppose that the matrix with off-diagonal entries C;; and diag-
onal entries equal to 0 is irreducible. If (Hy(t),..., Hn(t)) is a solution to
the first system of equations in (2.5) with H;(0) > 0 for ¢ = 1,..., N and
H;(0) > 0 for some i, then H;(t) —» Hf ast — oo for i = 1,..., N, where
(Hf,..., Hy) is the solution to

N N
> CiyHy =0, > H;=H(0). (2.7)
i=1 J=1



(In other words, (Hf,...,H})T is the right eigenvector of ((Cj;)) cor-
responding to the eigenvalue 0 normalized so that its components sum to
H(0).) Similarly, suppose that the matrix with off-diagonal entries D;; and
diagonal entries equal to 0 is irreducible. If (Vi(¢),..., Vn(¢)) is a solution
to the second system of equations in (2.5) with V;(0) > 0fori=1,...,N
and V;(0) > 0 for some i, then V;(¢t) —» V.* ast — co fori=1,..., N, where
(Vi*,..., V}) is the solution to

N N
> DyVi=0, Y Vi=V(0). (2.8)
F=1 j=1

Proof: See Appendix.

In formulating our Eulerian models we will assume that the migration
process has reached a steady state, so that there may be exchange of indi-
viduals between patches but there is no net change in the total human or
vector population in each patch. Thus, we will assume that H;(t) = H} and
Vi(t) = Vi*with H} and V;* are as in Lemma 1 for i = 1,...,N. We will
assume that disease transmission occurs only between individuals that are
in the same patch at the same time. Let

b e =T
A = _EJ____,
(1 H-:
(2.9)
aiC;
Bi=5

Our Eulerian model with infected individuals present would take the form

dX; i N N
Frale AYi(HY = Xi) = riXi+ Y _Cii X5 — O _Ciu) Xs,
P i
dy; N N (2.10)
dt% =B X;(Vi - Vi) —miY;+ > DY — O DY,
o i
1=1,..., N,

It is clear from (2.7) and (2.8) that the set {(X3,...,Xn,Y1,...,YN):0 <
Xi < H}y 0<Y; <V i=1,...,N} is invariant for (2.10). We will always
assume that 0 < X;(0) < Hf and 0 < ¥;(0) < V;* for all 4.
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To address the issue of how diseases can be maintained in regions of low
transmission by the movement of humans between regions of high and low
transmission we again will want to consider cases where there are no vectors
and thus no transmission in certain patches. Then (2.10) becomes

dtz =AY (H — Xi) — X + ZCinj — (chi)Xi fori=0,..., Ny,
i g,

dx; N .

7t = —T'iXi+§Cin (ZC_“ fori=Ny+1,...,N,

J# J#z

dY; M

—C-&l_BX(V ~Y;) - m;Y; +ZDZJY (> Dj)Y; fori=0,..., N1,
i 7

(2.104)
where again as in (2.4A) we have N3 < N.

It is natural to ask whether it is possible to translate models between the
forms (2.4) and (2.10). Suppose we denote the number of infected human
residents of patch 7 in (2.4) as X;, that is, let the variables X; correspond
to the state variables for humans in (2.4). Denote the number of infected
humans currently located in patch 7 as X,, that is, let the variables X;
correspond to the state variables for humans in (2.10). Similarly, denote
the number of infected vector residents of patch ¢ as Y¥; and the number of
infected vectors currently located in patch ¢ as ;. Since the infected humans
currently in patch 7 could be from any patch, but human residents of patch
7 spend a fraction p;; of their time in patch 4, and similarly for vectors with
pj; replaced by g;;, we should have

N N
Xi=> piX; and Yi=)_ g;Y
=1

=1

Clearly we generally cannot solve this system unless the matrices ((p;;)) and
((gs;)) are invertible, but that need not be the case under the asumptions of
our models. In cases where the matrices are invertible, the system resulting
from translating the model (2.4) into a model with state variables X;, Y; into
a system in terms of X;,¥; is generally not of the form (2.10). Except in
special cases where the amount of time individuals spend in patches other
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than their patch of residence is small, it is not even approximately of the form
(2.10). Thus, the two modeling formulations are not equivalent, although in
some cases they might both be reasonable as approximate descriptions of a
given system. Hence, we will want to analyze both types of models.

3 Analysis and Application of the Models

3.1 General properties

The models (2.4) and (2.10) are cooperative systems on the invariant sets
{(X1,..., XN, Y1,...,YN): 0< X; <H;, 0<Y; <V, i=1,...,N} and
{(X1,..., XN, Y1,...,YN):0< X; <HF, 0SY; < V¥ i=1,...,N} re-
spectively, so they generate flows that are order preserving on those sets; see
for example (Smith 1995). Since the models are epidemiological in character
it is sensible to describe the stability or instability of the disease free equi-
librium X; = Y; = 0,7 =1,..., N in terms of a basic reproduction number
Ry. That number can be computed by the methods of (van den Driessche
and Watmough 2002). ( Since the models describe vector-borne diseases
that require the two-step process of a human transmitting the disease to a
vector and the vector transmitting the disease to another human to achieve
transmission from one human to another, some authors would consider the
basic reproduction number for such models to be R% if Rg were the value
computed as in (van den Driessche and Watmough 2002). We will use that
convention here. In the case of (2.4), a formula for Ry and a description
of the dynamics of the model were already obtained by Hasibeder and Dye
(1988), partly on the basis of results of Lajmanovich and Yorke (1976). We
will consider that case first. Throughout our discussion we will use p(M) to
denote the spectral radius of the matrix M. In some cases, for example if
M is primitive, p(M) will be the principal eigenvalue of M.

Theorem 1. (Hasibeder and Dye 1988): Let A = ((AijHi/my)), B =
((Bi;Vi/r;)), where the entries in A and B are taken from (2.4). Assume that
the matrices A, B are irreducible. Then for (2.4) we may take RZ = p(AB).
If Ry < 1 then the disease-free equilibrium in (2.4) is stable while if Rp > 1
it is unstable. If the disease-free equilibrium in (2.4) is stable then there
is no positive equilibrium and the disease-free equilibrium is globally sta-
ble among nonnegative solutions. If the disease-free equilibrium is unstable
there is a unique positive equilibrium which is globally stable among positive
solutions.
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Remarks: It follows from the theory of monotone dynamical systems that
in the case of Theorem 1 where the disease-free equilibrium is unstable there
will be a monotone trajectory connecting the disease-free equilibrium to the
positive equilibrium; see (Smith 1995). Furthermore (Hy,...,Hn,Vi,..., VN)
is a supersolution to the equilibrium problem for (2.4) so a a solution of (2.4)
with that initial data will decrease toward an equilibrium. Thus, when it ex-
ists, the positive equilibrium is globally stable in the set {(X1,..., XN, Y1,...,Yn):
0<X;<H, 0<Y;<V,, i=1,...,N}. It follows from the structure of
A and B that if one of the parameters A;;, B;;, H;, or V; is increased then
Ro will increase but if r; or m; is increased then Ry will decrease. This is
sensible biologically since increasing transmission rates or the initial number
of susceptible individuals typically increase Ry while increasing recovery or
mortality rates decrease typically decrease it.

Theorem 2. Consider the system (2.10) restricted to the invariant region
{(X1,.. ., Xn,Y1,..., YN): 0SS X; <HF, OSY; <V* i=1,...,N}. Let
C = ((Cij)) and D = ((Dy)). Let A* = ((A:H6y)), B* = ((B: M bi3)),

C* = ((O” - ')"1'51']')), and D* = ((DU — miéij)), where (57;j is the Kronecker
delta. Assume that the matrices C' and D are irreducible. Then for (2.10)
we may take RE = p(A*D* 1B*C*~1). If Ry < 1 then the disease-free equi-
librium in (2.10) is stable while if Ry > 1 it is unstable. If the disease-free
equilibrium in (2.10) is stable then there is no positive equilibrium and the
disease-free equilibrium is globally stable among nonnegative solutions. If
the disease-free equilibrium is unstable there is a unique positive equilibrium
which is globally stable among positive solutions.

Proof: See Appendix.

Remarks: The proof for Theorem 2 could be adapted to give an alter-
nate proof of Theorem 1. A related result giving a similar formula for Ry
in a discrete-diffusion type model for a disease with direct transmission in
a patchy environment was obtained by Dhirasakdanon et al. (2007). The
proof of Theorem 2 shows that the matrix A*D*~*B*C*~! is nonnegative.
Increasing the transmission rates and populations A;, B;, H] or V;* will in-
crease some of its entries and thus Ry will be monotone increasing in those
parameters. In the proof of Theorem 2 it is also shown that the matrices
—C* = =C+((rsds;)) and —D* = —D+((m;0;;)) are nonsingular M-matrices
. It follows that they are invertible with nonnegative inverses (see Berman
and Plemmons 1979). To see how their entries depend on r;and m;, suppose
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that R; >0fori=1,..., N and observe that

[~C + ((Ribij))] ™ = [-C + ((ridig))] 7 =
[—C + ((Rsbii))] " ([ — Ridi;))[—C + ((ri655))] 7"

Hence, if 7; > R; for all 4 then [~C + ((Riby))]™! — [-C + ((rid;))] tis
nonnegative. Thus, the entries in A*D*~1B*C*~! = A*(-D*"1)B*(-C*"1)
are monotone decreasing with respect to the recovery rates ;. Similarly,
they are also monotone decreasing with respect to the mortality rates m.
It follows that p(A*D*~B*C*~1) and hence Ry are monotone decreasing in
those parameters. The dependence on the movement rates Cj;, D;; is more
subtle in general but sometimes can be determined in particular cases. We
will return to that point later.

The analysis used to prove Theorems 1 and 2 also applies to models such
as (2.4A) and (2.10A) where vectors are present only in some patches and
the equations for the infected vectors in the patches where vectors are absent
are dropped from the model. In such cases the dimensions of the matrices A
or A* will be different from those of B or B* so the short formulations for Hgy
given in those theorems cannot be used; however, we can still compute R
as the spectral radius of an appropriate matrix by using the methods of (van
den Driessche and Watmough 2002), or perhaps directly, and the arguments
for the existence and uniqueness, or nonexistence, of a positive equilibrium
are unchanged. In particular, for (2.4A) we can define the matrices .4 and
B as in Theorem 1, except that A is N x N7 and B is Ny x N; then the
results of (van den Driessche and Watmough 2002) imply that

R0=P<OB 64> (3.1)

For (2.10A) we can define the entries in A*, B*, C*, and D* as before, but
with A*, B*, and D* now being N1 X N7 matrices. Define the N x N matrix

A*by
i [0 A"
A—<O ‘ ) (52)

We can then compute Ry by the methods of (van den Driessche and Wat-

mough 2002) as
o A N[(-ct o\

14
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3.2 Two-patch models with no transmission in one patch

To understand how movement between patches might sustain infection in
patches with no transmission we will study models with two patches but
with transmission only in one patch. We will denote the patch with no
transmission as patch number 2. We will assume that there is no movement
of vectors between patches, so that there are no infected vectors in patch
number 2, that is, Y5 = 0. Since Y3 = 0 we omit the equation for Yy from
the models.

The first such model we will consider has the form (2.4A) with N = 2
and N7 = 1, that is

dX

_(El =AuYi(Hy — X1) - X,

dX

bd_t% = A1 Y1(Hy — X3) — m2Xo (3.4)
dY;

-321 = (BuX1 + Bi2X2)(Vi — Y1) — miYa.

Computing Ry by the method of van den Driessche and Watmough (2002)
as described in the previous subsection yields

A B i, +A21312H2V1
rimy rgmi

R? = (3.5)
The first term on the right in (3.5) is the value of R2 that would result if
patch number 1 were isolated. Note that it is possible to have that value-
less than 1, so that the disease would not persist in patch number 1 in the
absence of patch number 2, but still have R3 > 1 in (3.5). If Ry > 1 in (3.5)
then (3.4) has a unique positive equilibrium (X7, X3, Y7") that is globally
stable among positive solutions.
Suppose that Ry > 1 in (3.5). The components X7 and X5 satisfy

A11H1Y1* 1421f-{2Y1=‘<
X = e J = 3.6
P AnYF 4 27 AnYy +ry (3.6)
The component Y;* satisfies
AnBquVl AlemHle _ mi (3 7)

AnYr+m AnYf +ry ~ Vi =Y

It is possible to compute Y;* explicitly by solving (3.7), but that yields
a quadratic equation with coeflicients depending on the parameters of the
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model in a complicated way, so the result is not very illuminating. For
our purposes we can obtain reasonably satisfactory results by making some
simple observations and estimates.

If A;3B1iH1Vi/rim1 > 1 so that the disease could persist in patch
1 if that patch were isolated, then it follows from the form of (3.7) that
Y > Y where Y™ is the equilibrium that would result if patch number
1 were isolated ( equivalently if the second term on the left were dropped
from (3.7)). We would then have

AunBuHiVi —rima

Ay (BuiHy +mg)
which yields a lower bound on X3 in (3.6). However, our primary interest
is in comparing X7 and X;.

Suppose that pi11/pa1 > r1/7r2. ( Recall that p;; denotes the fraction
of his or her time that a human resident of patch i spends in patch j, so
if 71 = rg this assumption would mean that residents of patch 1 spend a
larger fraction of their time in patch 1 than do residents of patch 2, which
is reasonable.) By (2.3) we then have A11Y7*/r1 > A21Yy*/r2. In that case
it follows from (2.3) and (3.6) that

X§ . A21H2 . Allyl* +T‘1 > A21H27‘1 _ p21H27'1

X;  AnY*+4r,  AnHy T AnHire  puHirs

If the human populations and recovery rates are equal in the two patches
then the last expression in (3.7) reduces to the ratio of the fractions of time
spent in patch 1 by residents of patch 2 and patch 1 respectively. In any
case, the model predicts that disease can indeed be maintained in patch 2
without transmission there, at a level that is proportional to the fraction of
their time that residents of patch 2 spend in patch 1 relative to residents of
patch 1.

Next we consider the case of models of the form (2.10A), again with
transmission only in patch 1, and no movement of mosquitoes between
patches, so that we do not include an equation for infected vectors in patch
2. This leads to models of the form

Yl* > Yl** —

(3.8)

(3.9)

aXx

'Zi'il = A1Yi(H} — X1) — r1 X1 + C12X3 — Car X1,

aX

_CFZ = CZle - C12X2 - 7‘2X2 (310)
ay;

-E% = Ble(Vl* - Yl) —m1Ys.
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In this case Ry is given by

Ay B HIVY Cia + 1o

R = .
my Cigr1 + Corrg + 7179

(3.11)

with coeflicients as in (2.7)-(2.9). Note that Hf < H(0) where H(0) is
the total initial human population in the two patches, so that if Co; is
sufficiently large we will have Ry < 1 in (3.11). Recall that the parameter
Coq1 represents the rate of migration from the patch with transmission to the
patch without transmission. Thus, a sufficiently high rate of migration from
the patch with transmission into the patch without it can cause the disease
to be eliminated. A similar observation was made in (Hsieh et al. 2007) for
diseases that are directly transmitted between humans.
For Rp > 1 in (3.11) the equilibrium (X7, X5, Y7*) of (3.10) satisfies

«_ OnXi

2T Cratre

, B Vi X7
s Lo U

1 BlXik + mq (3'12)
X* = A1BiVPH - Qmi _ (RE-1)Qm

¥ =

Bi(AiVF+Q)  Bi(AVr+Q)
where
Q= Ciary +C — 21rg + 1172
- Chia + 79 ‘

It is clear from the first equation in (3.12) that if the rates of migration
as reflected by the size of the coefficients Ci5 and Ch; are comparable to
the recovery rate in patch 2 then disease can be sustained in patch 2 even
though there is no transmission in that patch.

4 Conclusions

The models in (2.4),(2.4A), (2.10), (2.10A) describe vector borne disease
systems on networks of patches. Those patches can reflect physical loca~
tions, socio-economic-behavioral classes, or other features that distinguish
subpopulations of people or vectors. The models include terms describing
the movement of humans and vectors between patches. The models can be
parameterized in terms of coeflicients that have clear biological interpreta-
tions and which in principle could be measured. The analysis shows that
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the models are cooperative systems with simple dynamics. They predict
that either the disease will disappear or that it will become established at
a unique stable equilibrium, depending on the parameters. Which of these
two possibilities will actually occur will depend on the basic reproduction
number Ry, which is well defined for the models. The value of Ry for any
of the models can be characterized as the spectral radius of an associated
matrix and can be explicitly calculated in simple cases. Analysis of mod-
els with two patches but with disease transmission only in one patch shows
that if there is sufficient movement of humans between patches the disease
can be sustained in the patch with no transmission. This suggests that a
possible explanation for observations that vector borne diseases persist in
some patches where mosquito densities and hence disease transmission rates
are very low is that there is either immigration of humans from patches
with higher transmission or that humans residing in patches with low trans-
mission commute to patches with high transmission. The strength of those
effects depend on the rate of migration or the fraction of time spent by
commuters in patches with high transmission rates.
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Appendix

Proof of Lemma 1:

Choose ¢g > maz{—Cy :i=1... N}. The matrix ((Cy;))+col is irreducible
with positive diagonal elements, so it is primitive ( see Graham 1987, pps.
137-138) and hence the Perron-Frobenius theorem applies to it. It follows
that ((Cij)) + col has a principal eigenvalue characterized by having a posi-
tive eigenvector, and all other eigenvalues have real parts smaller than that
principal eigenvalue. By the definition of the entries Cj;, the vector (1,...,1)
is a left eigenvector of ((Cyj)) + col corresponding to the eigenvalue cp, so
co must be the principal eigenvalue of ((Cy;)) + col. Since every eigenvalue
of ((Cyj)) is equal to A — cg, where A is an eigenvalue of ((Cij)) + col, it
follows that 0 is an eigenvalue of ((Cj;)) with positive left and right eigen-
vectors and that all other eigenvalues of ((Cj;))must have real parts less than
zero. Any nonnegative nontrivial initial data (H1(0),...,Hn(0)) will have
a positive component in the direction of the right eigenvector (HY,..., H})
corresponding to the eigenvalue 0 of ((Cj;)). Since all other eigenvalues of

N
((Cs5)) have negative real parts and H(t) = ZHi(t) = H(0), the conclu-
i=1

sion of the lemma follows for (Hi,...,Hy). The proof for (V4,...,Vy) is
the same.

Proof of Theorem 2:

The proof will make use of results and ideas from (van den Driessche and
Watmough 2002) as well as some other results on matrices and monotone
dynamical systems. We will briefly review the key ideas from (van den
Driessche and Watmough 2002) as they apply in this context. The models
treated by van den Driessche and Watmough (2002) are formulated as

dz;
T = fi(w) = Filz) - W(a) (A1)
where z = (z1,...,%n, F; is the rate at which new infections occur in com-

partment ¢ and —V; is the rate of movement of individuals into or out of that
compartment by other means. The rate V; is broken down further as V; =
ViF —V; where Vi,V are rates of individuals entering and leaving compart-
ment ¢ respectively. The linearizations of 7 and V at the disease free equilib-
rium are denoted by F and V repectively. In our situation, n = 2N and each
compartment describes the number of infected humans or vectors on one of
the IV patches. All compartments contain only infected individuals. We have
T = (Xl, e ,XN,Yl,. . .YN). Then fz(l‘) = AzY'L(H: - XZ) for i = 1,. . .,N
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N
and Fi(z) = BionXi-n (Vi y—Yien) fori = N+1,...,2N; Vi = > Cy; X;
je=1

J
J#i
N
fori=1,...,Nand Vi = Z Di_ny;Yjfori=N+1,...,2N;and V] =
N
N N
(ri+ (O Cii))Xifori=1...Nand V; = (mi-y + ( Y Dja-)))Yi-n
i AN
for i = N +1,...,2N. The disease-free equilibrium in our models is

(0,...,0). The hypotheses Al-A4 of (van den Driessche and Watmough
2002) can be readily verified, at least for (X,Y) in the invariant region
{(X1,..., XN, Y1,...,YN) 0 X; < H}, OSY; < V¥ i=1,...,N},
from the forms of F and V. The key hypothesis (A5) of (van den Driessche
and Watmough 2002) is that if F is set to zero then all the eigenvalues of the
Jacobian of what remains in f(z) evaluated at the disease-free equilibrium
have negative real parts. In our case the eigenvalues in question are those
of —V. The matrix V consists of twolN x N blocks on the diagonal and
zeroes elsewhere. The blocks are ((Cy; — r:645)) and ((Dy; — myds;)) where
d;5 is the Kronecker delta. Let C = ((Cj;)) . It follows as in the proof of
Lemma 1 that C — ((r:0s;)) has an eigenvalue og that is real, characterized
by having a positive eigenvector #, and is larger than the real part of any
other eigenvalue of C — ((r;id;;)). Let 1o = min{r; : i = 1,...,N}. We
have ([C — ((1"2(5”)]&‘)Z = go¢; so that (Cé); = (r; +a0)@, so componentwise
Cé > (rg + 00)$. It follows from Lemma 2 of (Cosner et al. 2007) that
C has a real eigenvalue greater than or equal to rg + op with nonegative
nonzero eigenvector. If rg -+ op > 0 that would contradict the fact that 0
is the eigenvalue of C with largest real part, as established in the proof of
Lemma 1. It follows that we must have og < —rg < 0 so the eigenvalues of
C — ((r;0;5)) must all have negative real parts, as required. ( It then follows
from (Berman and Plemmons 1979, p.135, Gy that —C + ((r;0;5)) is a non-
singular M-matrix.) A similar analysis yields the corresponding conclusion
for =D + ((m6i;)). Thus, Lemma 1 and Theorem 2 of (van den Driess-
che and Watmough 2002) apply to our model (2.10). In particular, V' is a
nonsingular M-matrix, and the basic reproduction number is the spectral
radius of FV 1, that is, Ry = p(FV~1). Using A* = ((A:;H}6ij)), B* =
((Bil\fi*éij)),c* = ((CZ] - ’r'i5¢j)), and D* = ((Dij - midij)), we have that

0 A
F=<B* g > (A.2)
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and

-~C* 0
V= ( 0 _D* > . (A.3)
It follows that )
- 0 -~ A*D*
Fv=l= ( _B el o ) (A.4)

To obtain a formulation analogous to that given by Hasibeder and Dye
(1988) and quoted in Theorem 1, observe that

sqyk—1 & re—1
A*D*1BC 0 ) (45)

—1\2
(FV ) - < 0 B*C*_IA*D*Wl

so that R = p(A*D*~1B*C*1).

If Ry > 1 then the disease-free equilibrium is unstable. The Jacobian
of linearization of the model (2.10) around the disease-free equilibrium is
J = F—V. Again, the proof of Lemma 1 implies that F'—V has a principal
eigenvalue og that is real, larger than the real part of any other eigenvalue,
and which has a positive eigenvector. In the case where (0,...,0) is un-
stable, we have og > 0. It is easy to see that in that case that if 1[7 is a
positive eigenvector for o then for the model (2.10) written in the notation
of (A.1) we have filed) > 0 for all i as long as € > 0 is sufficiently small.
It then follows by the order preserving property of (2.10) that a solution
t0 (2.10) with initial data 61,5 will increase componentwise toward an equi-
librium (X*,Y*) = (X§,..., X}, Y7, ..., Yy) of (2.10) that is the minimal
positive equilibrium of (2.10) in the invariant set {(X1,..., XN, Y1,...,YN):
0< X; <H}, 0<Y; <V* i=1,...,N}. (See (Cantrell and Cosner
2003, section 3.6, for further discussion and references.) Similarly, if we let
E—_- (Hf,...,HY, V..., V5) we have fi(é < 0 for all 7, so that the solution
to (2.10) with initial data £ will decrease componentwise toward an equilib-
rium (X**,Y**) that is the maximal equilibrium of (2.10) in the invariant
set {(X1,.. - XN, Y1,..., ¥YN): 0< X; <H} 0SY; <V i=1,...,N}L

The equilibrium (X*,Y*) ( and any other positive equilibrium) must
satisfy

“ ((ACH? = X08) \ (( X* ) _( 0
( (Bi(Vi* = ¥)6:7)) D I > ( 7 ) = ( 0 ) (A.6)

In the invariant region for (2.10) the off-diagonal terms in the matrix in
(A.6) are nonnegative, and the matrices C*, D* are irreducible, so again as
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in the proof of Lemma 1 the matrix in (A.6) has a principal eigenvalue that
is characterized by having a positive eigenvector. In this case (X*,Y*)T
is the eigenvector and the eigenvalue is 0. For any other positive equilib-
rium (X***, Y***) the relation analogous to (A.6) with (X*,Y™) replaced by
(X***, Y***) would necessarily hold, implying that the matrix

< (Bi(VEr = Y7%)d45)) D ¢ ) (A7)

would also have principal eigenvalue 0. However, unless (X, Y™*) = (X, Y***)
that is impossible because the principal eigenvalue is increasing relative to
the entries of the matrix. Hence the minimal equilibrium (X*,Y™) must
be the unique equilibrium. (This proof is entirely analogous to that of
the corresponding result in continuous space as in (Cantrell and Cosner
2003, Proposition 3.3). In particular, the minimal and maximal equilib-
ria must be the same, so that the unique positive equilibrium is globally
stable for solutions of (2.10) with positive initial data in the invariant set
(X1, XN, Ye, 0 YN) 0SS X <HF 0LSY; <V, i=1,...,N}L

If Rg < 1 then the disease-free equilibrium is stable and the principal
eigenvalue oo of the Jacobian of linearization of the model (2.10) around
the disease-free equilibrium is negative. It follows that since the entries of
the matrix in (A.7) at any positive equilibrium (X***,Y***) are less than
or equal to those of the linearization around the disease free equilibrium
(0,...,0), the matrix in (A.7) also must have a principal eigenvalue that is
negative. On the other hand, any positive equilibrium (X***, Y™***) must
satisfy (A.6) with (X*,Y*) replaced by (X***,Y***), so if such an equilib-
rium exists then the principal eigenvalue of the matrix in (A.7) must be
zero, which is a contradiction. Thus, there can be no positive equilibrium,
so the solution to (2.10) with initial data E will decrease toward the disease-
free equilibrium. It then follows from the order preserving property of the
system that the disease free equilibrium is globally stable in the invariant
set {(X1,...,Xn,Y1,.. ., YN):0< X, <H!} OLSY; <V i=1,...,N}
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